

Notes:

*BoP typically includes power supply, water conditioning, and process utilities like pumps, process-value measuring devices, and heat exchangers **Revenues from sale of O₂ and heat, as well as funding are shown outside since they are not costs

This typical hierarchy of costs can vary greatly based on region, utilisation of electrolysers, and scale. For instance, a 10 MW electrolyser has only 63% of specific capex of 1 MW electrolyser, which for 100 MW it further reduces to 40%

COST VS. EFFICIENCY TRADEOFF CRITICAL IN CHOOSING ELECTROLYSER TECHNOLOGY

	Alkaline	Proton Exchange Membrane (PEM)	
	Uses thick membranes with Ni-based electrodes. Simple system design, widely used in fertilisers, NH ₃ production	Uses thin perfluorosulfonic acid (PFSA) membranes, which necessitates use of precious metal electrodes	
Operating Pressure	Moderate (30 bar)	High (70 bar)	Higher pressure requirement increases cost
Efficiency	Moderate (70-80%)	High (80-90%)	Higher pressure increases efficiency
Сарех	USD 300-350/kW (lowest from China), USD 750-1,000 (standard)	USD 600-1,250/kW	Installation/indirect costs are typically equal to uninstalled system costs (total is ~2x)
Technology readiness	Matured and Commercialised. 2/3 of global capacity	Young and Commercialised. 1/5 of global capacity	Remaining capacity is from marginal SOEC/AEM technology
Life	60,000 hours	80,000 hours	Post life, stack replacement, which costs 60-80% of upfront capex, is needed

• Cost trade-off between alkaline and PEM is not direct as the latter operates better under varying power conditions, reducing battery storage cost in the system. This could make capex for PEM lower than alkaline in certain cases, especially since alkaline requires higher space as well

SOEC is an upcoming technology in large prototype phase, which has lower power consumption than other technologies. Its cost is typically above USD 2000/kW

SBICAPS Complete Investment Banking Solutions

COST OF SETTING UP ELECTROLYSERS TO COME DOWN SIGNIFICANTLY

PRODUCING MORE ELECTROLYSERS IS CHEAPER*

Note: Analysis for 1 MW PEM electrolyser

LARGER ELECTROLYSERS ARE MORE CAPEX EFFICIENT

Wind

~125 GW of renewables are expected to be needed just for NGHM by 2030

Solar tariffs have dropped rapidly owing to declining module prices and improved technology

Wind tariffs started out lower, then dipped sharply due to reverse bidding. They have since stagnated due to low returns at these tariffs

> Given the requirement for constant renewable power, the role of wind and storage will go up when Green H₂ ecosystem develops – the exact mix various from project to project

> Recent FDRE tariffs discovered of <Rs. 5/unit augur well for reducing the levelised cost of Green H₂ production

TECHNOLOGY EVOLUTION TO BRING DOWN GREEN H2 COSTS GLOBALLY

PROJECTED PRICE OF HYDROGEN BY COLOUR (USD/kgH₂)

Notes: 1. NZE = Net Zero Emissions by 2050 Scenario in 2030 2. The dashed area represents the CO₂ price impact, based on USD 15-140/t CO₂ for the NZE Scenario.

- Factoring in carbon costs, the cost of producing green H₂ from solar will start becoming competitive with fossil fuel-based sources by 2030
- This will foster not only create new avenues of demand such as steel, transport etc., but also gradually replace existing places where H2 is used, such as fertiliser and refining industries

FORE'SIGHT'ED INCENTIVES: GREENLIGHTING VIABILITY

٠

•

٠

Robust Domestic Demand High Renewable Potential Total RE potential of 2.1 TW, amongst India is a major consumer of fertilisers, highest in the world petroleum, and steel: key end users Fair mix of wind (55%) and solar (36%), These sectors are set to grow in India aiding 24x7 power unlike other countries Suitable storage potential for PSP, and upcoming BESS **GREEN H**₂ **Low Energy Cost Trade advantage** RE cost at ~Rs. 2.5-3.5/unit is near 5 mn tonnes per annum of Green H2 by ٠ lowest in the world 2030 will lead to cumulative reduction in fossil fuel imports of over Rs. 1 trn FDRE tariffs (incl. storage) are also very Ample export potential to Europe, Japan cheap

Adding strategic incentives to these inherent benefits could make green H₂ more viable

Source: CEA, WEF, PIB, SBICAP\$ 19

SIGHT PROGRAMME COMPONENTS HAVE OVER'SIGHT' ACROSS THE VALUE CHAIN

Scheme	Component 1	Component 2 Mode 1	Component 2 Mode 2A	Component 2 Mode 2B
End Product	Electrolysers	Green Hydrogen or its derivatives	Green Ammonia	Green Hydrogen
Basis of Bid	Highest index based on specific energy consumption and local value addition. Some preference to small players	Least average incentive demanded over 3-year period	Least cost for production and supply, fixed incentive and firm demand	Least cost for production and supply to refineries, fixed incentive and firm demand
Outlay (Rs. bn.)	44.4	130.5		
Implementation Agency	SECI	SECI	SECI	Oil & Gas Companies, CHT
Incentive	I = Rs. 4,400/kW in Year 1, progressively decreasing till Year 5 (Fixed incentive) I*min (allotted capacity, net sales of electrolysers)	I = Rs. 50/kg in Year 1, Rs. 40/kg in Year 2, and Rs. 30/kg in Year 3 (These represent upper caps, and developers must bid lower) I*min (allotted capacity, actual production)	I = Rs. 8.82/kg in Year 1, Rs. 7.06/kg in Year 2, and Rs. 5.30/kg in Year 3 (Fixed Incentive) I*min (allotted capacity, actual production)	I = Rs. 50/kg in Year 1, Rs. 40/kg in Year 2, and Rs. 30/kg in Year 3 (Fixed Incentive) I*min (allotted capacity, actual production)
Other Details	 First Tranche of 1,500 MW: Bucket 1: 1,200 MW (any stack) Bucket 2: 300 MW (indigenous stack technology) Second Tranche of 1,500 MW: Bucket 1: 1,100 MW (any stack) Bucket 2: 300 MW (indigenous stack technology) Bucket 3: 100 MW (indigenous stack technology – smaller units) 	 Each Tranche of 450 ktpa: Bucket 1: 410 ktpa (technology agnostic) Bucket 2: 40 ktpa (biomass pathway) Two tranches launched till now 	First Tranche of 550 ktpa, enhanced in Jun'24 to 750 ktpa Actual tender in Tranche 1 of 539 ktpa (live tender)	First Tranche of 200 ktpa

TOTAL OUTLAY Rs. 175 bn

Complete Investment Bankin

SIGHT

PS

Source: MNRE, SBICAPS | 21

ELECTROLYSER COMPONENT FULLY LAUNCHED

INCENTIVE ALLOCATION FOR SIGHT COMPONENT 1 (Rs. bn.)

Source: MNRE, MERCOM, News Sources, SBICAPS 22

>75% IN COMPONENT 2 YET TO BE COMMITTED

INCENTIVE ALLOCATION FOR SIGHT COMPONENT 2 (Rs. bn.)

CURRENT WINNERS: A MOTLEY MIX OF SPECIALISTS AND END USERS

